Superparamagnetic Fe3O4-PEG2K-FA@Ce6 Nanoprobes for in Vivo Dual-mode Imaging and Targeted Photodynamic Therapy
نویسندگان
چکیده
The development of targeted nanoprobes is a promising approach to cancer diagnostics and therapy. In the present work, a novel multifunctional photo/magnet-diagnostic nanoprobe (MNPs-PEG2K-FA@Ce6) has been developed. This nanoprobe is built using folic acid (FA), bifunctional polyethylene glycol (PEG2K) and photosensitizer chlorin e6 (Ce6). The MNPs-PEG2K-FA@Ce6 nanoprobes are superparamagnetic, can be synthesized on a large scale by a one-pot hydrothermal process without further surface modification and are stable in an aqueous environment for eight months. Compared with free Ce6 nanoprobes in vitro studies, the MNPs-PEG2K-FA@Ce6 nanoprobes significantly enhance cellular uptake efficiency and promote the effectiveness of photodynamic therapy (PDT) with the assistance of 633 nm laser irradiation. The unique nanoprobes show superior penetration and a retention time of more than six days with less accumulation in the liver allowing highly effective tumor recognition and monitoring. Additionally, there was little damage to healthy organs or tissues. These exciting new nanoprobes could be potential building blocks to develop new clinical therapies and translational medicine.
منابع مشابه
In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect
Effectively prolonging the residence time of nanoprobes in the tumor region and reducing the accumulation of nanoprobes in the vital organs (for example, lung, liver and spleen) is crucial for high-efficiency photodynamic therapy (PDT) of cancer. Herein, we systematically report an ultra-small and highly stable nanoplatform with diameters of 4, 8 and 13 nm that exhibited excellent photodynamic ...
متن کاملFolic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging
BACKGROUND Gastric cancer is 2th most common cancer in China, and is still the second most common cause of cancer-related death in the world. Successful development of safe and effective nanoprobes for in vivo gastric cancer targeting imaging is a big challenge. This study is aimed to develop folic acid (FA)-conjugated silica coated gold nanoclusters (AuNCs) for targeted dual-modal fluorescent ...
متن کاملAptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy.
In this work we designed a MoS2 nanoplate-based nanoprobe for fluorescence imaging of intracellular ATP and photodynamic therapy (PDT) via ATP-mediated controllable release of (1)O2. The nanoprobe was prepared by simply assembling a chlorine e6 (Ce6) labelled ATP aptamer on MoS2 nanoplates, which have favorable biocompatibility, unusual surface-area-to-mass ratio, strong affinity to single-stra...
متن کاملTumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy.
Tumor-targeted imaging and therapy have been the challenging issue in the clinical field. Herein, we report tumor-targeting hyaluronic acid nanoparticles (HANPs) as the carrier of the hydrophobic photosensitizer, chlorin e6 (Ce6) for simultaneous photodynamic imaging and therapy. First, self-assembled HANPs were synthesized by chemical conjugation of aminated 5β-cholanic acid, polyethylene glyc...
متن کاملO2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia
Photodynamic therapy (PDT) is an emerging effective treatment for cancer. However, the great promise of PDT for bladder cancer therapy has not yet been realized because of tumor hypoxia. To address this challenge, we fabricated O2-generating HSA-MnO2-Ce6 NPs (HSA for human serum albumin, Ce6 for chlorin e6, and NPs for nanoparticles) to overcome tumor hypoxia and thus enhance the photodynamic e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016